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Abstract

In hospitals, automatic identification of patients
with cameras can greatly generalize the applica-
bility of intelligent patient monitoring. However,
patients unaware of being monitored do not adjust
their behaviors, making pose variation a challenge.
We argue that the frame-wise feature mean is un-
able to characterize the variation among frames.
We propose to preserve the overall pose diversity
if we want the video feature to represent the sub-
ject identity. Then identity will be the only source
of variation across videos since pose varies even
within a single video. Following that variation dis-
entanglement idea, we present a pose-robust face
verification algorithm with each video represented
as an ensemble of frame-wise CNN features. An-
other challenge is that patients may move anytime,
which makes real-time processing of a video stream
a necessity. Instead of simply using all the frames,
the algorithm is highlighted at the key frame selec-
tion by pose quantization using pose distances to
K-means centroids, which reduces the number of
feature vectors from hundreds to K while still pre-
serving the overall diversity. We analyze how such
a video sampling strategy is better than random
sampling. An end-to-end face recognition algo-
rithm is developed for real-time patient identifica-
tion with a rank-list of one-to-one similarities using
the proposed video representation. It works well in
practice and generates a private patient dataset on
the fly. On the official 5000 video-pairs of pub-
lic YouTube Face dataset, our algorithm achieves a
comparable performance with state-of-the-art that
averages over deep features of all frames. In sum-
mary, the main contribution of this paper is a video-
versus-video consensus with discriminative metric
learning on the fly, which is verified in a working
system for the patient monitoring system.

37

gl

Figure 1: Painful expression can be subtle and short. De-
tection and measurement are difficult. Pain level is defined
as AU4 + (AU6——AU7) + (AU9——AU10) + AU43 [18]
[from the Prkachin and Solomon pain intensity (PSPI) met-
ric].

1 Introduction

According to Wikipedia, patient originally meant *one who
suffers or has pain’. Obtaining accurate patient-reported pain
assessments is especially important to effectively manage
pain in the irradiated head neck cancer (HNC) patients. Pre-
vious work by our HNC clinic team has demonstrated a role
for prophylactic pain management in HNC patients by requir-
ing active pain monitoring to identify early increases in pain
intensity to titrate the analgesic and achieve early pain con-
trol. This results in a reduction of the overall narcotic dose
that is needed improving swallow function and is of particu-
lar interest given the national concern of opioid dependency,
especially with increasing cancer survivors. However, facil-
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itating self-reporting for patients at scale is difficult due to a
lack of existing technological tools and the dynamic nature
of patients self-assessments. Current solutions for this out-
of-clinic pain assessment protocol lie in the development of a
smartphone app, wherein patients enter pain levels. This lim-
its adoptability (and accuracy) because it requires significant
attention and effort by the patient in a scenario where they
are under duress. To this end, this proposal seeks to develop
an automated approach to pain assessment based on facial
analysis from easily-obtainable video sequences. This serves
two purposes: first, it simplifies the data collection process
for the patient and reduce the strain on their manual efforts;
second, it standardizes the feedback mechanism by ensuring
one system perform all assessments and reduce bias, thereby
enabling earlier intervention by clinicians to manage the pain
for HNC patients.

We need the sample mean and variance to approximate a
true data distribution while the sample mean itself is not a ro-
bust statistic. However, feature averaging is straightforward
and conventional to represent a sequence such as in the recent
video-based recognition works such as face recognition, ac-
tivity recognition and video captioning. Taking hospitals as
an instance, automatic identification of patients with a cam-
era can greatly generalize the applicability of intelligent pa-
tient monitoring. However, patients unaware of being mon-
itored do not adjust their behaviors, making pose variation
a primary challenge. We argue that the frame-wise feature
mean is unable to characterize the variation existing among
frames. If we want the video feature to represent the sub-
ject identity, we had better preserve the overall pose diver-
sity, because Convolutional Neural Networks (CNN) features
are normally not robust to poses. Then, disregarding factors
other than identity and pose, identity will be the only source
of variation across videos since pose varies even within a sin-
gle video. Following such a variation disentanglement idea,
we present a pose-robust face recognition algorithm with each
video represented as an ensemble of frame-wise CNN fea-
tures. Moreover, patients may move anytime, making real-
time processing of a video stream a necessity. Instead of
simply using all the frames, the algorithm is highlighted at
the key frame selection by pose quantization using pose dis-
tances to K-means centroids, which reduces the number of
feature vectors from hundreds to K while still preserving the
overall diversity. In particular, we analyze how such a video
sampling strategy is better than random sampling. In this pa-
per, an end-to-end face recognition system is presented for
real-time patient identification with the proposed video repre-
sentation. The correlation, a simple metric though, between
two video features is employed to measure how likely the two
videos represent the same person. The system runs well real-
time and generates a private patient dataset on the fly. On the
official 5000 video-pairs of public YouTube Face dataset, our
algorithm achieves a comparable performance with state-of-
the-art that averages over deep features of all frames.

2 Related Works

Face verification is a key subproblem of face recognition, e.g.,
it determines whether a pair of two face images are from the
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Figure 2: The histogram map of ECG pain signals over time.
The X axis is the time. The Y axis is the bin number, from
the smaller signal value in the top to the larger in the bottom.

same person or not. A practical face verification system needs
to run at real time with a high accuracy. Recently, CNN has
shown significant improvements over traditional approaches
in terms of the verification accuracy [1][2][10]. However, the
computational overload of CNN makes it hardly usable for
the practical video-based face verification systems. The main
challenges of face verification arise from the high within-
identity variations and the high identity-identity similarities.

There are many different types of face verifications. For
Web-based applications, verification is conducted by compar-
ing images to images. The images may be of the same person
but were taken at different time or under different conditions.
For online face verification, alive video rather than still im-
ages is used. More specifically, the existing video-based veri-
fication solutions assume that reference face images are taken
under controlled conditions [19]. However, in practical sce-
narios, references are often taken uncontrolled, e.g. automat-
ically taking photos of a customer with a camera deployed at
the reception place of a hospitals or a hotel.

The conventional way of using handcrafted features such
as Local Binary Patterns (LBP) [18] or Wavelet [] does not
suffer from the low-speed issue. In this deep learning era [9],
face recognition on a number of benchmarks such as LFW [4]
has been well solved by DeepFace [2], DeeplD [16], FaceNet
[1] and so on. See VGGFace [10] and reference therein for a
systematic review.

Usually we measure the similarity of the two subject and
then make a decision by thresholding the similarity. The fea-
ture describing a subjects is extracted using either a shallow
model [11][12] or a deep model [1][2][10]. We use a deep
model in this paper. The cosine similarity or correlation both
are well-defined similarity metrics. In contrast, we could also
measure how different two subjects are. For example, the
dissimilarity can be measured by Euclidean distance as it is
anti-correlated with correlation.
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Figure 3: At registration (bottom-left), a inconspicuous web-
cam tracks the face of the patient and selects several face im-
ages as references for the patient. At testing (bottom-right),
ceiling-mounted cameras continuously scan the crowd, de-
tect faces and compare them with the reference images of all
patients. The CNN feature of a image without face frontal-
ization is hoped to be invariant to poses.

3 The Algorithm

3.1 Key face selection by pose quantization

Using a full live video stream will require many computa-
tional resources. Instead, we select up to n face keyframes
out of a video stream according 3D poses. Intuitively, we
want to retain the key faces that are as different as possible.
Practically, we select the face keyframes under as-different-
as-possible 3-D poses. We sample n reference images at reg-
istration and compute feature vectors ay,...,a, € R%. At
testing, for each frame we compute a feature vector y € R?.
Since a1, ..., a,, are different representation of the same sub-
ject, they are correlated. We would like to maximize the di-
versity of reference image set. Thus, the objective of refer-
ence image selection is to
T, T
max Z(al a;)" ww' (a; — a;)

ey

which is unsupervised learning of a subspace w from the data
matrix A.

First, we compute the rotation angles of roll, pitch and yaw
for each face video using existing 3D pose estimation method
in OpenCV. Then, we performs a frame-wise vector quanti-
zation which reduces the number of images required to rep-
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resent the face from tens or hundreds to K (say, K =9 for a
K-means codebook), while preserving the overall diversity.

3.2 CNN-based Representation

The pretrained VGG face model [] is used for our verification
purpose without any re-training. The model has 24 layers,
including several stacked convolution-pooling layer, 2 fully-
connected layer and one softmax layer. Since the model was
trained for classification purpose only, we use the output of
the second fully-connected layer as our face feature, which is
a 4096-dim vector for each input face.

Before extracting descriptors, the face region proposed by
the face detector is further geometrically normalized to re-
duce the scale uncertainty in the detector output and the effect
of pose variation, e.g. in-plane rotation. An affine transfor-
mation is estimated which transforms the located facial fea-
ture points to a canonical set of feature positions. The affine
transformation defines an ellipse which is used to geometri-
cally normalize the circular region around each feature point
from which local appearance descriptors are extracted [17].

3.3 Verification Metric Learning

A discriminatively learned metric was used on top of the
CNN features. First, the 4096 face feature is still computa-
tionally demanding for real-time face verification. Second,
since the VGG face model is often not particularly trained for
verification purpose. Adding a metric learning could allow
to re-tune a generically learned CNN face model towards the
verification purpose while avoiding the expensive back prop-
agation procedure.

For each face we extract n pairs of distances. The Maha-
lanobis distance is defined as (a; — y)” M (a; — y) where the
positive semi-definite matrix M is a distance metric that we
want to learn from training data. Simply M can be the in-
verse of the covariance matrix between a; and y. Then, if M
is the identity matrix, the Mahalanobis distance reduces to the
Euclidean distance. Inspired by the definition of covariance
matrix, we would like to decompose M into wwT where w is
a projection matrix. Then, our objective is to

min Y (a; — ) ww (a; —y) 2

and equivalently

Irti]n Z(wTai —wly) T (wha; —wly).
7

3)

where the projection matrix w characterizes a discriminative
low-dimensional subspace. Thus, applying a distance metric
also serves as dimension reduction. A Mahalanobis distance
implicitly corresponds to computing the Euclidean distance
after the linear projection of the data. Once w is learned from
training data, then we fix w for testing. In the following, we
will define a supervised learning objective which minimizes
the distances of genuine pairs and maximizes the distances of
impostor pairs. The loss function is a weighted combination
of the two aspects.

Given two sequences x; and ¥,,, we have two set

of training samples {((xi,xj),l), ((ym,yn),l)}+ and



We propose Supervised Multi-View

{ ((1'17 ym)a O) }7
Canonical Component Analysis (SMVCCA), which can be
formulated as the following optimization problem.

max trace(W' CW) 4)
st WICy, W=I
W{CL Wiy = = Wi CYE W
= Wg;)C&iZ)W(y):

where C = C+C,,, = ZZ", Z = [X Y]. The covariance
Cg,, is only a normalization term. Therefore, we can neglect
it, and correspondingly, change Eq. (4) to be:

max trace(WTCW) (5)
st WIw=1I
T T T
WiyWa) = = Wiy W) = Wi, W,.

It has been verified [?] that Eq. (5) can be rewritten as a least-
squares problem:

min  [|Z - WH||%, ()
s.t WIW =1
T T T
WiyWa) = =W i)Wy = Wi, W,

where H is the coefficient matrix, and W is the basis ma-
trix. Following this formulation, group-sparse nonnegative
SMVCCA is proposed as:

K

. 1
min 12~ WHF ol HIE 453 (Wl
k=1
st. VwP)P<1,k=1,--- K,
Viw P =1, =1
H>0 W>0. 7
Here H > 0, W > 0 are the nonnegative constraints on both
the basis and coefficients. ||w§k) |2 < 11is a convex relaxation
of each le(k) |2 = 1, which ensures that the correlations are

normalized. The penalty ||H||% is to avoid arbitrarily large H.
Parameters «, § control the relative influence of each penalty
term. The group sparsity penalty on the K -view canonical ba-
sis W 1.k is the £; 4-norm: (3 Zszl W (i)ll1,4- The most
general value for g is 2 or co. In particular, in order to pro-
mote sparsity on the feature views, we adopt ¢ = co. Each
£y q-norm here is defined by

Wi =Y lwillg = [willg + - llwellg,  (®)
=1

which is the sum of vector £,-norms of its columns. Such
¢, q-norm is used to promote that canonical basis matrices
W), - W) contain as many zero columns as possi-
ble, which corresponds to only the correlations of the non-
zero feature views are maximized in certain canonical vector
space. Notice that there is sparsity penalty on the label view
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and we retain the normalization |w'"’||2 = 1. This is be-
cause all feature views are expected to be highly correlated
with the label view in canonical space.

In fact, the ¢;, penalty is related to the constraints

V||W§k) |> < 1. As features are sparser, their £3-norm will
be naturally smaller. Therefore, we change V||w§k)|\2 <1
to be V||w§k)H2 < 1-p, and, V\\w§y)||2 = 1 — (3. Finally,
group-sparse nonnegative SMVCCA is expressed as:

K
, 1
min §||Z ~WH| %+ aH|: + 8 W llvg,
k=1
st VwPIP<1-B k=1, K
Vw2 =1-8, i=1,---,r,
H>0 W >0. )
Optimization

Problem (9) is biconvex with respect to W and H. Since the
sparsity penalties are non-smooth, we develop an alternative
optimization scheme based on the block coordinate descent
(BCD) method. In particular, the scheme bases on the vector-
block BCD method, in which one column of a factor matrix is
updated at each step fixing all other values. It has been proven
that such vector-block BCD often outperforms matrix-block
BCD method.

The overall vector-block BCD method is summarized in
the following. The inner loop are the vector-block optimiza-
tion of H, W y.xy and Wy, respectively.

The solution of the subproblem is given in a closed form:

+

h;, < | —————
T [2a 4 [lwal?
where []4+ denote the element-wise projection operator to
nonnegative numbers.
The subproblem is easily seen to be equivalent to

(10)

(F)y.T
; x Rihi o B (k)
min  [lw;" — Iz + Wi g
R ]2 72 (| |12 !
st. wh>o |wP|I2<1-5 (11)

Given the nonnegative constraint, the following problem re-
tains the minimum of problem (11):
RFNT|
- T B+
a2 | "

As g = oo, based on the theory of Fenchel norm duality [?],
the dual form of problem (12) is

B

[l |2

(k)

min  [|lw} W, (12)

k
wi®|2<1-8

(K), T

min  fjwi® — | T LB g,
N

st Il < s IR <125, a3)

which can be solved by first using the method, and then nor-
malization such that ||w§k) |2 < 1 — B. Once the minimizer



wgk)* of problem (12) is computed, the optimal solution for

problem (11) is found as
(B)y, T
w, = |05 | —W; .
l e ] X

The solution of the subproblem is to first minimize the cost
function

(14)

Wy, T
(v) R;"hj
+
then normalize the solution by
w¥)
W Zi /T8 (16)
LWl

3.4 Recognition at Run Time

A current strategy which works reasonably well in practice is
to claim the person at registration and the person in testing are
the same one, as long as there have been 7 accumulated time
stamps with the respective smallest distance below a thresh-
old. Let us write A = [ay, ..., a,,] and then we have a problem
of

y=Azxz st |zlo=1 (17
at each time step, where z is an indicator vector. Surely, only
accounting the reference images with the smallest distance is
from experiences yet heuristic. If we hope to account no more
than a sparsity s reference images, then we have

y = Ax

st z)o < s (18)
Once W is determined, given a test sample x and its label

¥, the inference to its corresponding coefficient vector h is

1 2 2
min 5z — Whi + af[hllz (19)
where z = [z7y”]T. It is easy to show that this problem has
the following closed-form solution:

h=[(W'W +2a1)"'W'g] | (20)

4 Experiments

We test our network on the UNBC-McMaster Shoulder-Pain
dataset. It contains 200 videos of 25 patients who repeatedly
raise their arm (feeling pain) and then put it down (pain re-
leased). All frames per video are labeled with a ground-truth
pain score. Now, our task is to fit our predicted score into the
ground truth during testing. Due to our network’s nature of
our network that there is no temporal modeling at all, we test
each frame separately as an face image. As a result, it does
not affect the MSE even if we mix all videos of one patients
and shuffle all images. However, the x-axis Fig. 4 indexes the
frames in the time order and videos in the directory alphabet-
ical order.

We run leave-one-out cross validation 25 times. Each time,
the videos of one patient are reserved for testing. All the
other videos are used to train the deep regression network.
As a result, we train the network 25 times. Even with pre-
trained models being available from the previous round, We
simply re-train the network using the current eligible training
data. There is no sharing of network weights across differ-
ent rounds of cross validation. In the end, the performance is
summarized in Table 1.

a1

’LM‘% ‘L'm

400 600 800 1000 1200
Index of images of one patient for testing

0 200 1400 1600

Figure 4: Our regression network with the center loss.

[ Methods [ MAE [ MSE [ PCC ]
smoothL1 + ReLU 0.456 | 0.936 | 0.541
smoothL1 + sigmoid 0.416 | 1.060 | 0.524
smoothLL1 + softmax + sigmoid 0.394 | 1.039 | 0.485
L1 + centerloss + sigmoid 0.389 | 0.820 | 0.603
smoothL1 + L1 centerloss + sigmoid | 0.456 | 0.804 | 0.651
smoothL1 + L2 centerloss + sigmoid | 0.435 | 0.816 | 0.625
OSVR-L1 (CVPRI16) [22] 1.025 | N/A | 0.600
OSVR-L2 (CVPR16) [22] 0.810 | N/A | 0.601
RCNN (CVPRI16w) [23] N/A 1.54 | 0.65

Table 1: Performance our various versions of our regression
network on the Shoulder-Pain dataset for automated assess-
ment of the pain level (i.e., pain expression intensity). MAE
is short for mean abosolute error deviated from the ground-
truth label over all frames per video. MSE is mean squared
error which measures the curve fitting degree. PCC is Peason
correlation coefficient which measures the curve trend simi-
larity (the larger, the better).

5 Conclusion

In summary, the main contribution of this paper is a video-
versus-video consensus with discriminative metric learning
on the fly, which is verified in a working system for the crowd
monitoring system in the hospital.
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